Die nützliche Mantelwelle

Walter Kägi HB9XBG (hb9xbg@uska.ch)

Vertikalhalbwellendipole wie «Sleeve- oder Koaxialantennen» [1] nutzen die untere Dipolhälfte gleichzeitig als Zuleitung und als Strahler. Diese Antennen benötigen kein Erdnetz, brauchen wenig Platz und haben eine zweckmässige Einspeisung. Ein neuer vielversprechender Ansatz auf Basis der «strahlenden Mantelwelle» wird im vorliegenden Artikel beschrieben.

Bevor wir auf die detaillierte Beschreibung des neuen Ansatzes eingehen, müssen wir einige grundlegende physikalische Eigenschaften eines stehenden Halbwellendipols zur Kenntnis nehmen. Der Strahlungswiderstand (Dipolmitte) ist abhängig von der Aufbauhöhe. Wenn die Spitze des unteren Dipolarms λ/80 über Grund liegt, also in Bodennähe ist, beträgt der Strahlungswiderstand 100 Ω [2]. Bei einer Aufbauhöhe von 10 m (unteres Dipolende über Grund) beträgt der Strahlungswiderstand nur 69 Ω. Bei grösseren Aufbauhöhen pendelt sich der Strahlungswiderstand schlussendlich bei 73 Ω ein. Der Strahlungswiderstand eines Vertikaldipols ist abhängig von der Aufbauhöhe über Grund. Die Leitfähigkeit und die dielektrischen Eigenschaften des Bodens haben wenig Einfluss auf den Strahlungswiderstand. Vielmehr haben sie Einfluss auf das Strahlungsdiagramm und den Gewinn einer Vertikalantenne.

Ein 20-m-Band $\lambda/2$ -Vertikaldipol mit dem unteren Dipolast 20 cm über Boden hat unabhängig von der Bodenbeschaffenheit immer einen Strahlungswiderstand R_{S} von 100 Ω .

Dieser 100-Ω-Effekt war Basis eines neuen Ansatzes, einen vom Ende her gespeisten Halbwellen-Vertikaldipol mit bodenneutralem Aufbau zu entwickeln.

Das 100-Ω-System

Basierend auf der o.g. Erkenntnis bietet sich ein durchgehendes $100-\Omega$ -System gemäss **Bild 1** an. Ein Transformationsglied passt die 50 Ω Übertragungstrecke des Transceivers (TRX) zum $100-\Omega$ -System an. Die voll angepasste Übertragungsstrecke vom TRX bis zur Einspeisung der Antenne sorgt für einen hohen Wirkungsgrad.

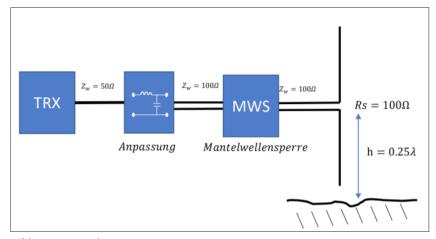


Bild 1: Das 100-Ohm-System

Die horizontale Einspeisung gemäss Bild 1 ist unzweckmässig! Eine Einspeisung vom Ende der unteren Dipolhälfte mit 100-Ω-Fusspunktimpedanz würden die praktischen Antennenbauanforderungen erfüllen. Da eine $100-\Omega$ -Koaxialspeiseleitung auf dem Markt nicht erhältlich ist, bietet sich die Lösung mit der Verwendung von Lautsprecherkabeln mit 2x 2.5 mm Litzendurchmesser und PVC-Isolation an. Ein solches Lautsprecherkabel hat ziemlich genau 100-Ω-Wellenimpedanz erfüllt gleichzeitig zwei Funktionen: Die Funktion der Feederleitung bis zur Dipolmitte und die Funktion der «strahlenden Mantelwelle» des unteren Dipolastes. Die Umwandlung vom horizontal zum endgespeisten Vertikaldipol erklärt Bild 2 (Seite 42) in drei Schritten.

Umwandlung zum Mantelwellendipol

Mantelströme sind Ausgleichsströme, die durch unterschiedliche Potentiale zwischen symmetrischen und unsymmetrischen Systemen provoziert werden. Wegen des Skineffektes wirkt die Aussenseite des gegen Masse orientiertern Leiters

für Hochfrequenz wie eine separate Eindrahtleitung [3]. Es fliessen somit drei Ströme im Lautsprecherkabel: Die Gegentaktströme für die Erregung der Antenne, und der Mantelstrom als Gleichtaktstrom mit abstrahlender Wirkung. Betrachtet man die Grundform eines Dipols gemäss Bild 2 fliessen die Gegentaktstöme i, und i, durch das Lautsprecherkabel und teilen sich in den Dipolarmen als Gleichtaktstrom mit strahlender Wirkung auf. Die Felder der beiden Gegentaktströme in der Zuleitung heben sich auf und es entsteht keine Abstrahlung bei symmetrischer Kopplung. Bei unsymmetrischer Speisung fliesst auf der Aussenseite des nach Masse orientierten Leiters ein Mantelstrom gegen Masse.

Klappt man die linke Hälfte des Grundformdipols (*Bild 2*) 90° nach unten und vereint sie mit dem nach Masse orientierten Leiter und klappt man zusätzlich den rechten Dipolast 90° senkrecht nach oben, so entsteht ein vertikaler Mantelwellendipol. Dieser Dipol funktioniert nur richtig, wenn der Mantelstrom i₄ am unteren Ende des kurzen Dipolasts bei exakt λ/4 gesperrt wird. Der zwischen dem Transceiver und der

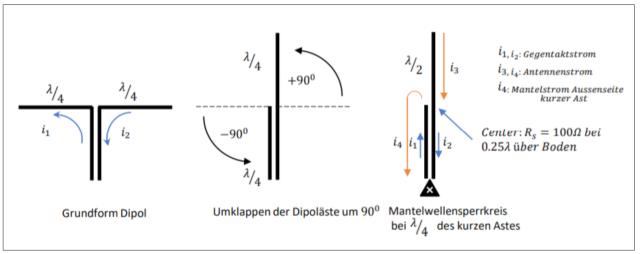


Bild 2: Die Umwandlung zum vertikalen Mantelwellendipol

Antenne fliessende Gegentaktstrom muss ungehindert durch die Mantelwellensperre fliessen können. In dieser Anordnung fliessen im kurzen Ast hervorgerufen durch den Skineffekt zwei getrennte Ströme: Der Gegentaktstrom \mathbf{i}_4 in Phase mit dem Antennenstrom \mathbf{i}_4 in Phase mit dem Antennenstrom \mathbf{i}_3 im oberen Dipolast. Die beiden Ströme \mathbf{i}_3 und \mathbf{i}_4 bilden den strahlenden Antennenstrom des vertikalen Mantelwellendipols.

Die Ventilwirkung, d.h. der Durchlass der Gegentaktströme i_1 und i_2 und die gleichzeitige Sperrung des Mantelstromes i_4 bei $\lambda/4$ am unteren Ende des kurzen Dipolastes, wird durch den Einbau eines Mantelwellensperrkreises nach Potter (Bell) [4] realisiert. Dabei werden beide Leiter des Lautsprecherkabels um den Ringkern des L-C-Sperrkreises gewickelt (*Bild 3*). Für die Gegentaktströme hat diese Induktivität keine Wir-

kung, da sich der magnetische Fluss im Ringkern aufhebt. Die Gegentaktströme fliessen somit ungehindert durch den Ringkern. Der Mantelstrom i $_4$ wird hingegen gesperrt, da er im Ringkern einen magnetischen Fluss bewirkt. Der Parallellschwingkreis (in Resonanz mit der Antenne) sperrt den Mantelstrom im Lautsprecherkabel bei $\lambda/4$ am unteren Ende des kurzen Dipolastes. Die Antenne wirkt nun als vertikaler Mantelwellendipol.

Experimenteller Aufbau

Die Impedanzanpassung und der Sperrkreis wurden in ein spritzwasserdichtes Universalgehäuse aus Polycarbonat eingebaut. Das Schema *Bild 3* zeigt die Beschaltung der Anschlussbox mit dem Transformationsglied L1-C1 und dem Sperrkreis L2-C2. Aus praktischen Gründen wurden für den experimentellen Aufbau alle Kondensatoren variabel

ausgelegt. Wichtig ist, dass das Lautsprecherkabel mit **beiden** Adern auf den Ringkern des Sperrkreises gewickelt wird. Das Lautsprecherkabel bildet in seiner Fortsetzung nach dem Sperrkreis die Feederleitung und Antenne. Die Ideallänge des beschriebenen Mantelwellendipols für 14.2 MHz, unter Berücksichtigung des Verkürzungsfaktors von 0.95 ist 10.04 m. Die eine Litze des Lautsprecherkabels wird vom oberen Ende bis zur Mitte entfernt.

Realisiert wurden je ein 100 Watt und ein 1000-Watt-Mantellwellendipol für das 20 und 40-m-Band (*Bild 4*). Der im Bild der 1000-Watt-Version am Antennenanschluss angebrachte 100-Ω-Widerstand diente zur Simulation der Antenne für den Abgleich der Anpassschaltung. Nachträglich wurde auch bei der 1000-Watt-Version ein Belüftungskanal wie bei der 100-Watt-Version eingebaut. Die ganze Anordung lässt sich miniaturisieren, indem man anstelle der variablen Kondensatoren fixe Kapazitäten verwendet.

Die Simulation

Die Simulation ^[5] des Strahlungswiderstandes, des Strahlungsdiagramms und des SWR-Verlaufs ist mit einer Bodenleitfähigkeit von 2 mS/m und einer Dielektrizitätskonstante $\epsilon_r=13$ gerechnet. Dies sind schlechte elektrische Bodeneigenschaften, so wie wir sie in der Testphase der Antennen vorfanden. Das Testgelände befand sich auf dem Simplonpass, dem QTH von HB9BFM. Alpiner, felsiger und elektrisch schlechter Boden – aber ideal für Performance Tests! In diesem Gelän-

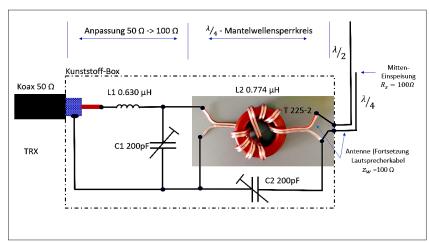


Bild 3: Schema 20-m-Band Mantelwellen-Vertikaldipol

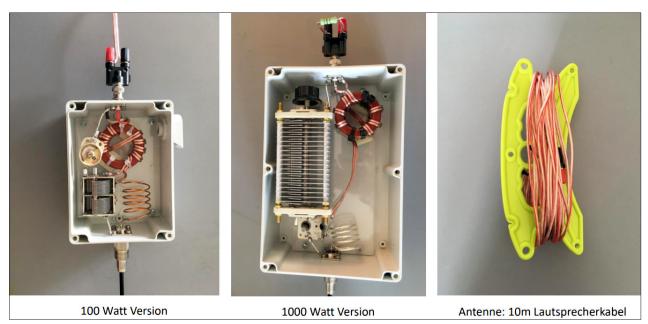


Bild 4: Experimenteller Aufbau Vertikal-Mantelwellendipol (14 MHz)

de war es auch möglich, einen 22 m hohen Fiberglasmast für die 40-m-Band Vertikalantenne aufzubauen. Betrachtet man die in *Bild 5* dargestellten Simulationsergebnisse fällt auf, dass die Aufbauhöhe der Antenne einen signifikanten Einfluss auf den komplexen Strahlungswiderstand der Antenne hat. Eine Aufbauhöhe von 20 cm über Boden ergibt einen reelen Strahlungswiderstand von knapp $100~\Omega$, zwei Meter über Grund bereits einen von $76~\Omega$. Die anfänglichen Überlegungen zum Konzept bestätigen sich. Der Unter-

schied des Erhebungswinkels für die zwei simulierten Aufbauhöhen ist 2.5° und damit marginal. Zurückzuführen ist dieser Effekt auf die Überlagerung der direkten und der am Boden reflektierten Wellen bei verschiedenen Aufbauhöhen.

Betrachtet man den komplexen Strahlungswiderstand und den SWR-Verlauf (*Bild 6, Seite 44*), so findet man eine hohe Bandbreite (SWR < 1.5) von 900 kHz! Alle simulierten Werte haben sich in den Tests bestätigt.

Betriebserfahrungen

(Hanspeter Baumeler HB9BFM)

Wir, HB9XBG und HB9BFM, haben ab Mai 2020 oberhalb des Simplonpasses auf 2040 m ü.M. erste Versuche mit einer 20-m- und 40-m-Version der beschriebenen Antenne durchgeführt. Als Masten wurden je ein 10 m und ein 22-m-Fiberglasmast verwendet. Mit der 7-MHz-Antenne wurden viele DX-QSOs unter anderem auf dem langen Weg nach Ozeanien geführt. Mit der 14-MHz-Version konnten Verbindungen nach

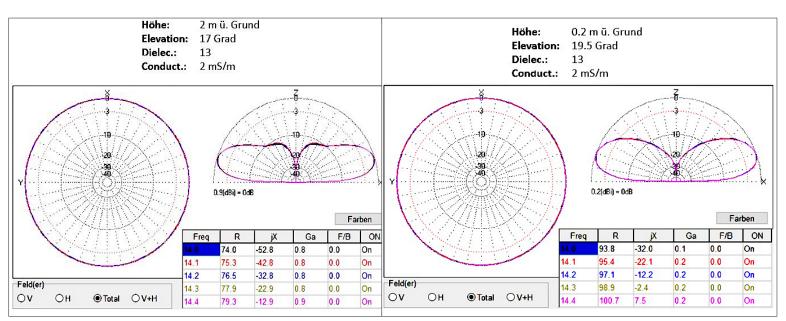
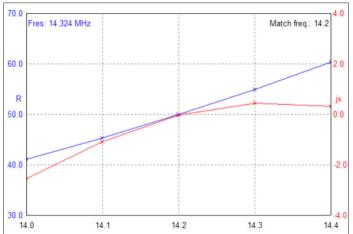



Bild 5: Strahlungswiderstand und Strahlungsdiagramm für verschiedene Aufbauhöhen

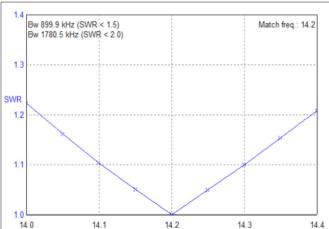


Bild 6a: Impedanz-Verlauf

Bild 6b: SWR-Verlauf

und Japan hergestellt werden. Trotz

nimums und des nicht immer idea-

len Horizontes konnten oft gute DX

DX-Verbindungen konnten im Ver-

gleich zur Windom-Antenne bis zu

tauscht werden. Im Nahbereich (500

- 1000 km) eignete sich die Windom-

der bodenneutralen Antenne hat

ihre guten Eigenschaften in Theorie und Praxis bestens bewiesen.

HB9XBG mit HB9BFM oberhalb des Simplonpasses

Band	L1	C1	L2	C2	Kabellängen ¹⁾
20 m	0.630 μΗ	112 pF	0.774 μΗ	162 pF	10.04 m
40 m	1.260 μΗ	224 pF	4.000 μΗ	125 pF	20.07 m

Dimensionierung der Reaktanzen und Kabellängen

Südafrika sowie nach USA, Alaska Quellen:

- des derzeitigen Sonnenfleckenmi- [1] Rothammels Antennenbuch: 12. aktualisierte Auflage, Kapitel 19.5.2
- Rapporte (59+) geloggt werden. In [2] ARRL Antenna Book: 24th Edition, Chapter 2.13
- 5 S-Stufen bessere Rapporte ausge- [3] Balun verstehen bauen prüfen: Günter Fred Mandel, DL4ZAO
- Antenne besser. Das neue Konzept [4] Probleme bei ausserhalb der Mitte gespeister Antennen, DGØSA
 - [5] Simulationsprogramm: MMANA-Gal_Basic Version 3

Vorteile des Mantelwellendipols nach Version HB9XBG

- Niederohmige Einspeisung (100 Ω)
- Hohe Bandbreite, flacher SWR-Verlauf (900 kHz, SWR < 1.5)
- Kein Tuner notwendig
- Hoher Wirkungsgrad (praktisch keine SWR-Verluste)
- Aufbau nur wenige cm über Boden (bodenneutral)
- Funktioniert gut über felsigem Boden (ideal für SOTA)
- Keine Radials/Gegengewichte notwendig
- Flache Abstrahlung (ideal für DX)
- 6 dBi Gewinn über idealem Grund
- Braucht wenig Platz
- Schnell aufbau- und demontierbar
- Kann als Fahnenmast genutzt werden
- Geeignet für Portabelbetrieb
- Geeignet für den Eigenbau

¹⁾ Kabellängen sind bis zum Mantelwellensperrkreis gerechnet ($v_k = 0.95$)